Telegram Group & Telegram Channel
Were RNNs All We Needed? [2024]

Я уже писал про S4, которая, если убрать 3 тонны математической мишуры, сводится к тому, что это специальная версия RNN, которую можно применять параллельно ко всей последовательности.

"Как-то слишком дохера там мишуры" - подумали авторы данной работы и задались вопросом - а что, если мы напрямую возьмём LSTM и GRU и модифицируем их таким образом, чтобы их тоже можно было применять параллельно? Давайте разберёмся, что для этого нужно.

Сначала отвлечёмся на минутку и вспомним задачку подсчёта сумм префиксов массива - [x1; x2; x3 ....] -> [x1; x1+x2; x1+x2+x3]. Такая задача решается линейно за 1 цикл проходом по массиву. А можно ли решить её быстрее, если у нас есть параллельные вычисления?

Засчёт того, что операция суммы ассоциативна (a+b) + c = a + (b+c), нам не обязательно считать всю сумму по порядку. Например, чтобы посчитать всю сумму массива, мы можем в 1 потоке просуммировать левую половину, во 2 потоке правую и в конце сложить - получили подсчёт суммы за половину от длины.

Если у нас много потоков, то все префиксные суммы можно посчитать за логарифм от длины. Алгоритм, который это делает, называется Parallel scan. Итак, можно ли подружить RNN и Parallel Scan?

К сожалению, в обычной GRU/LSTM то, как x_t входит в h_t, зависит от h_{t-1}, так что сделать это нельзя - операция неассоциативна. Авторы предлагают архитектуры minLSTM и minGRU в качестве альтернативы, в которых такой зависимости нет, и которую можно применять параллельно. Понятно, что от этого частично теряется мощность модели, но тем же самым жертвует и S4.

В статье провели какие-то первичные замеры на простых задачах, но требуется дальнейшая битва этих вариаций с S4. Надеюсь, ему придумают простую альтернативу и мы получим возможность не разгребать тонны линала в статьях.

Проблема в том, что нам вообще-то хотелось бы иметь ту самую нелинейную зависимость, которую приходится убирать ради ассоциативности. Зависимость обработки входа от скрытого состояния всё ещё остаётся в модели, но только между разными слоями внутри модели. Может быть, если такой мощности взаимодействия не хватит, нужна будет какая-то комбинированная альтернатива - более медленная, но более умная. Поглядим.

Интересно, есть ли какая-то перспектива у таких архитектур в контексте meta-learning. С одной стороны, её можно применять in-context и у неё меньше параметров, а значит, должна лучше обобщать за пределы трейна. С другой стороны, это может оказаться просто слабой архитектурой. Тоже поглядим.

@knowledge_accumulator



tg-me.com/knowledge_accumulator/229
Create:
Last Update:

Were RNNs All We Needed? [2024]

Я уже писал про S4, которая, если убрать 3 тонны математической мишуры, сводится к тому, что это специальная версия RNN, которую можно применять параллельно ко всей последовательности.

"Как-то слишком дохера там мишуры" - подумали авторы данной работы и задались вопросом - а что, если мы напрямую возьмём LSTM и GRU и модифицируем их таким образом, чтобы их тоже можно было применять параллельно? Давайте разберёмся, что для этого нужно.

Сначала отвлечёмся на минутку и вспомним задачку подсчёта сумм префиксов массива - [x1; x2; x3 ....] -> [x1; x1+x2; x1+x2+x3]. Такая задача решается линейно за 1 цикл проходом по массиву. А можно ли решить её быстрее, если у нас есть параллельные вычисления?

Засчёт того, что операция суммы ассоциативна (a+b) + c = a + (b+c), нам не обязательно считать всю сумму по порядку. Например, чтобы посчитать всю сумму массива, мы можем в 1 потоке просуммировать левую половину, во 2 потоке правую и в конце сложить - получили подсчёт суммы за половину от длины.

Если у нас много потоков, то все префиксные суммы можно посчитать за логарифм от длины. Алгоритм, который это делает, называется Parallel scan. Итак, можно ли подружить RNN и Parallel Scan?

К сожалению, в обычной GRU/LSTM то, как x_t входит в h_t, зависит от h_{t-1}, так что сделать это нельзя - операция неассоциативна. Авторы предлагают архитектуры minLSTM и minGRU в качестве альтернативы, в которых такой зависимости нет, и которую можно применять параллельно. Понятно, что от этого частично теряется мощность модели, но тем же самым жертвует и S4.

В статье провели какие-то первичные замеры на простых задачах, но требуется дальнейшая битва этих вариаций с S4. Надеюсь, ему придумают простую альтернативу и мы получим возможность не разгребать тонны линала в статьях.

Проблема в том, что нам вообще-то хотелось бы иметь ту самую нелинейную зависимость, которую приходится убирать ради ассоциативности. Зависимость обработки входа от скрытого состояния всё ещё остаётся в модели, но только между разными слоями внутри модели. Может быть, если такой мощности взаимодействия не хватит, нужна будет какая-то комбинированная альтернатива - более медленная, но более умная. Поглядим.

Интересно, есть ли какая-то перспектива у таких архитектур в контексте meta-learning. С одной стороны, её можно применять in-context и у неё меньше параметров, а значит, должна лучше обобщать за пределы трейна. С другой стороны, это может оказаться просто слабой архитектурой. Тоже поглядим.

@knowledge_accumulator

BY Knowledge Accumulator




Share with your friend now:
tg-me.com/knowledge_accumulator/229

View MORE
Open in Telegram


Knowledge Accumulator Telegram | DID YOU KNOW?

Date: |

That growth environment will include rising inflation and interest rates. Those upward shifts naturally accompany healthy growth periods as the demand for resources, products and services rise. Importantly, the Federal Reserve has laid out the rationale for not interfering with that natural growth transition.It's not exactly a fad, but there is a widespread willingness to pay up for a growth story. Classic fundamental analysis takes a back seat. Even negative earnings are ignored. In fact, positive earnings seem to be a limiting measure, producing the question, "Is that all you've got?" The preference is a vision of untold riches when the exciting story plays out as expected.

Telegram hopes to raise $1bn with a convertible bond private placement

The super secure UAE-based Telegram messenger service, developed by Russian-born software icon Pavel Durov, is looking to raise $1bn through a bond placement to a limited number of investors from Russia, Europe, Asia and the Middle East, the Kommersant daily reported citing unnamed sources on February 18, 2021.The issue reportedly comprises exchange bonds that could be converted into equity in the messaging service that is currently 100% owned by Durov and his brother Nikolai.Kommersant reports that the price of the conversion would be at a 10% discount to a potential IPO should it happen within five years.The minimum bond placement is said to be set at $50mn, but could be lowered to $10mn. Five-year bonds could carry an annual coupon of 7-8%.

Knowledge Accumulator from in


Telegram Knowledge Accumulator
FROM USA